Методы испытания металлов. Свойства металлов и сплавов и их испытание Механические свойства металлов методы испытания механических свойств

Классификация свойств металлов и сплавов

Свойства металлов и сплавов делятся на 4 основные группы:

  1. физические,
  2. химические,
  3. механические,
  4. технологические.


Физические свойства металлов и сплавов.

К физическим свойствам металлов и сплавов относятся цвет, плотность (удельный вес), плавкость, тепловое расширение, теплопроводность, теплоемкость, электропроводность и способность их намагничиваться. Эти свойства называют физическими потому, что обнаруживаются в явлениях, которые не сопровождаются изменением химического состава вещества, т. е. металлы и сплавы остаются неизмененными по составу при нагревании, прохождении через них тока, тепла, а также при их намагничивании и плавлении. Многие из указанных физических свойств имеют установленные единицы измерения, по которым судят о свойствах металла.

Цвет.

Металлы и сплавы не прозрачны. Даже тонкие слои металлов и сплавов не способны пропускать лучи, но они имеют в отраженном свете внешний блеск, причем каждый из металлов и сплавов имеет свой особый оттенок блеска или, как говорят, цвет. Например, медь имеет розово-красный цвет, цинк - серый, олово - блестяще-белый и т. д.

Удельный вес -это вес 1 см 3 металла, сплава или любого другого вещества в граммах. Например, удельный вес чистого железа равен 7,88 г/см 3 .

Плавление - способность металлов и сплавов переходить из твердого состояния в жидкое, характеризуется температурой плавления. Металлы, имеющие высокую температуру плавления, называют тугоплавкими (вольфрам, платина, хром и т.д.). Металлы, имеющие низкую температуру плавления, называют легкоплавкими (олово, свинец и т.д.).

Тепловое расширение - свойство металлов и сплавов увеличиваться в объеме при нагревании, характеризуется коэффициентами линейного и объемного расширения. Коэффициент линейного расширения - отношение приращения длины образца металла при нагревании на к первоначальной длине образца. Коэффициент объемного расширения - отношение приращения объема металла при нагревании на к первоначальному объему. Объемный коэффициент принимают равным утроенному коэффициенту линейного расширения. Различные металлы имеют различные коэффициенты линейного расширения. Например, коэффициент линейного расширения стали равен 0,000012 , меди - 0,000017 , алюминия- 0,000023 . Зная коэффициент линейного расширения металла, можно определить его величину удлинения:

  1. определим, насколько удлинится стальной трубопровод длиной 5000 м при его нагреве до 20°С :

5000·0,000012·20 = 1,2 м

  1. определим, насколько удлинится медный трубопровод длиной 5000 м при его нагреве до 20°С :

5000·0,000017·20= 1,7 м

  1. определим, насколько удлинится алюминиевый трубопровод длиной 5000 м при его нагреве до 20°С :

5000·0,000023·20=2,3 м

(Во всех трех случаях расчета не принимался во внимание коэффициент трения от собственного веса.) На основании приведенных выше расчетов цветные металлы при нагревании расширяются в большей степени, чем сталь, что необходимо учитывать в процессе сварки.

Теплопроводность -способность металлов и сплавов проводить тепло. Чем больше теплопроводность, тем быстрее тепло распространяется по металлу или сплаву при нагревании. При охлаждении металлы и сплавы, обладающие большой теплопроводностью, быстрее отдают тепло. Теплопроводность красной меди в 6 раз выше теплопроводности железа. При сварке металлов и сплавов, имеющих большую теплопроводность, требуется предварительный, а иногда и сопутствующий подогрев.

Теплоемкость - количество тепла, потребное для нагревания единицы веса на . Удельная теплоемкость - количество тепла в ккал (килокалориях), необходимое для нагрева 1 кг вещества на . Низкую удельную теплоемкость имеют платина и свинец. Удельная теплоемкость стали и чугуна примерно в 4 раза выше удельной теплоемкости свинца.

Электропроводность - способность металлов и сплавов проводить электрический ток. Хорошей электропроводностью обладают медь, алюминий и их сплавы.

Магнитные свойства - способность металлов намагничиваться, которые проявляются в том, что намагниченный металл притягивает к себе металлы, обладающие магнитными свойствами.

Химические свойства металлов и сплавов.

Под химическими свойствами металлов и сплавов понимают их способность вступать в соединения с различными веществами и в первую очередь с кислородом. К химическим свойствам металлов и сплавов относят:

  1. стойкость против коррозии на воздухе,
  2. кислотостойкость,
  3. щелочестойкость,
  4. жаростойкость.

Стойкостью металлов и сплавов на воздухе называют способность последних противостоять разрушающему действию кислорода, находящемуся в воздухе.

Кислотостойкостью называют способность металлов и сплавов противостоять разрушающему действию кислот. Например, соляная кислота разрушает алюминий и цинк, а свинец не разрушает; серная кислота разрушает цинк и железо, но почти не действует на свинец, алюминий и медь.

Щелочестойкостью металлов и сплавов называют способность противостоять разрушающему действию щелочей. Щелочи особенно сильно разрушают алюминий, олово и свинец.

Жаростойкостью называют способность металлов и сплавов противостоять разрушению кислородом при нагреве. Для повышения жаростойкости вводят специальные примеси в металл, как, например, хром, ванадий, вольфрам и т. д.

Старение металлов - изменение свойств металлов во времени вследствие внутренних процессов, обычно протекающее замедленно при комнатной температуре и более интенсивно при повышенной температуре. Старение стали обусловлено выделением по границам зерен карбидов и нитридов, что приводит к повышению прочности и снижению пластичности стали. К элементам, уменьшающим склонность к старению стали, относятся алюминий и кремний, а способствующим старению - азот и углерод.

Механические свойства металлов и сплавов.

Рис. 1

К основным механическим свойствам металлов и сплавов относятся

  1. прочность,
  2. твердость,
  3. упругость,
  4. пластичность,
  5. ударная вязкость,
  6. ползучесть,
  7. усталость.

Прочностью называют сопротивление металла или сплава деформации и разрушению под действием механических нагрузок. Нагрузки могут быть сжимающими, растягивающими, скручивающими, срезающими и изгибающими (рис. 1 ).

Твердостью называют способность металла или сплава оказывать сопротивление прониканию в него другого более твердого тела.

Рис. 2

В технике наибольшее применение получили следующие способы испытания твердости металлов и сплавов:

  1. 2,5 ; 5 и 10 мм - испытание твердости по Бринелю (рис. 2,а );
  2. вдавливание в материал стального шарика диаметром 1,588 мм или алмазного конуса - испытание твердости по Роквеллу (рис. 2,б )
  3. вдавливание в материал правильной четырехгранной алмазной пирамиды - испытание по Виккерсу (рис. 2,в ).

Рис. 3

Упругостью называют способность металла или сплава изменять свою первоначальную форму под действием внешней нагрузки и восстанавливать ее после прекращения действия нагрузки (рис. 3 ).

Пластичностью называют способность металла или сплава, не разрушаясь, изменять форму под действием нагрузки и сохранять эту форму после ее снятия. Пластичность характеризуется относительным удлинением и относительным сужением.

где Δl = l 1 -l 0 - абсолютное удлинение образца при разрыве;

δ - относительное удлинение;

l 1 -длина образца в момент разрыва;

l 0 -первоначальная длина образца;

где Ψ -относительное сужение при разрыве;

F 0 - первоначальная площадь поперечного сечения образца;

F - площадь образца после разрыва

Рис 4

Ударной вязкостью называют способность металла или сплава сопротивляться действию ударных нагрузок. Испытания производятся на маятниковом костре (рис. 4 ). Перед испытанием маятник 1 отводят на угол подъема α , в этом положении закрепляют защелкой. Стрелку 2 , укрепленную на оси качания маятника, отводят до упора 3 , расположенного у нулевого деления шкалы 4 . Маятник, освобожденный от защелки, падает, разрушает образец 5 и, (продолжая двигаться то инерции, поднимается на другую сторону станины, на некоторый угол β . При обратном движении маятника стрелка 2 отклоняется от нулевого деления и при вертикальном положении маятника указывает величину β - наибольшего угла подъема маятника после разрушения образца. Разность углов α-β характеризует работу излома образца.

Для определения ударной вязкости вначале вычисляют работу А , которая затрачена грузом маятника на разрушение образца

А = Р (Н - h) кгс м

где Н - высота подъема маятника до удара в м

h -высота подъема маятника после удара в м

Р - ударная сила.

Затем определяют ударную вязкость

Где а н -ударная вязкость в кГс·м/см 2

F - площадь поперечного сечения образца в см 2 .

Ползучестью называют свойство металла или сплава медленно и непрерывно пластически деформироваться под действием постоянной нагрузки (особенно при повышенных температурах).

Усталостью называют постепенное разрушение металла или сплава при большом числе повторно-переменных нагрузок, а свойство выдерживать эти нагрузки называют выносливостью.

Испытания образцов металлов и сплавов на растяжение осуществляют при пониженных, нормальных и повышенных температурах. Испытания при пониженных температурах производят в соответствии с ГОСТ 11150-65 0 -100°С и при температуре кипения технического жидкого азота. Испытания при нормальных температурах осуществляют по Г ОСТ 1497-61 при температуре 20±10°С .

Испытания при повышенных температурах производят по ГОСТ 9651-61 при температуре до 1200°С .

При испытании образцов на растяжение определяют предел прочности - σ в , предел текучести (физический)-σ т , предел текучести условный (технический) -σ о,2 , истинное сопротивление разрыву-S к и относительное удлинение - δ .

Рис. 5

Для усвоения указанных выше величин рассмотрим диаграмму, представленную на рис. 5 . По вертикальной оси 0-Р отсчитываем приложенную нагрузку Р в килограммах (чем выше точка по оси, тем больше нагрузка), а по горизонтальной оси абсолютное удлинение- Δl .

Рассмотрим участки диаграммы:

  1. начальный прямолинейный участок 0-Р пц , на котором сохраняется пропорциональность между удлинением материала и нагрузкой (Р пц -нагрузка при пределе пропорциональности)
  2. точка резкого перегиба кривой Р’ т называется нагрузкой при верхнем пределе текучести
  3. участок Р’ т - Р т , параллельный горизонтальной оси 0-Δl (площадка текучести), в пределах которого удлинение образца происходит при постоянной нагрузке Р т , носящей название нагрузки при пределе текучести
  4. точка Р в , отмечающая наибольшую растягивающую силу - нагрузку при пределе прочности
  5. точка Р к -сила в момент разрушения образца.

Предел прочности при растяжении (временное сопротивление) σ в - напряжение, отвечающее наибольшей нагрузке, предшествовавшей разрушению образца:


где F 0 - площадь поперечного сечения образца перед испытанием в мм 2

P в - наибольшая растягивающая сила в кгс .

Предел текучести (физический) σ т -наименьшее напряжение, при котором происходит деформация испытуемого образца без увеличения нагрузки (нагрузка не увеличивается, а образец удлиняется),

Предел текучести условный (технический) σ о,2 - напряжение, при котором остаточная деформация образца достигает 0,2% :


Предел пропорциональности σ пц - условное напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями достигает определенной степени, устанавливаемой техническими условиями:

Истинное сопротивление разрыву S к -напряжение в шейке растягиваемого образца, определяемое как отношение растягивающей силы, действующей на образец непосредственно перед его разрывом, к площади поперечного сечения образна в шейке (F ):

Технологические свойства металлов и сплавов.

К технологическим свойствам металлов и сплавов относятся:

  • обрабатываемость резанием,
  • ковкость,
  • жидкотекучесть,
  • усадка,
  • свариваемость,
  • прокаливаемость и т.д .

Обрабатываемостью резанием называют способность металлов и сплавов поддаваться механической обработке режущим инструментом.

Ковкостью называют способность металлов и сплавов принимать необходимую форму под действием внешних сил как в холодном, так и в горячем состоянии.

Жидкотекучестью называют способность металлов и сплавов заполнять литейные формы. Высокой жидкотекучестью обладает фосфористый чугун.

Усадкой называют способность металлов и сплавов при остывании уменьшать свой объем при затвердевании из жидкого состояния, охлаждении, спекании спрессованных порошков или сушке.

Учебное пособие для профессионально-технических училищ. — М.: Машиностроение, 1990. — 256 с.: ил. — ISBN 5-217-00830-X.В доступной форме изложены основы теории прочности,пластичности металлов и сплавов. Рассмотрены устройство, принцип действия,правила эксплуатации приборов и оборудования для проведения испытаний,дефектоскопии. Приведены математические основы обработки результатов измерений. Учебное пособие может быть использовано при подготовке рабочих на производстве.Техника безопасности, противопожарная безопасность и производственная санитария
Основные сведения по технике безопасности.
Противопожарная безопасность.
Производственная санитария.
Основные свойства материалов
Исходные металлические материалы. Основные сведения о производстве металлов и сплавов.
Основные свойства металлов и сплавов.
Неметаллические материалы, их свойства и области применения.
Основы теории упругой и пластической деформации и разрушения
Общая характеристика и атомно-кристаллическое строение металлов и сплавов.
Понятие о напряженно-деформированном состоянии.
Упругая и пластическая деформации.
Влияние температуры на прочность и пластичность металлов и сплавов.
Сведения о процессе разрушения.
Механические испытания металлов и сплавов
Классификация методов испытаний.
Статические испытания.
Испытания на ударный изгиб.
Испытания на усталость.
Испытания на длительную прочность и ползучесть.
Измерение твердости.
Оборудование и приборы для проведения механических испытаний
Классификация оборудования и приборов для проведения механических испытаний.
Устройство и принцип действия машин для статических испытаний.
Устройство и принцип действия машин для ударных испытаний.
Устройство и принцип действия машин для повторно-переменных нагрузок (испытания на усталость).
Устройство и принцип действия машин для проведения специальных испытаний.
Приборы для измерения твердости.
Контрольно-измерительные средства, применяемые при испытаниях.
Неразрушающие методы контроля. Определение физических свойств металлов и сплавов
Классификация методов неразрушающего контроля.
Дефекты металлов и сплавов, причины их возникновения.
Тепловые методы обнаружения дефектов.
Термический анализ фазовых превращений в металлах и сплавах.
Термический анализ при высоких температурах.
Термический анализ при высоких скоростях нагрева и охлаждения.
Калориметрический анализ.
Дилатометрический метод.
Магнитные методы.
Электрические методы.
Параметрический вихретоковый метод.
Акустические методы.
Методы капиллярного контроля.
Методы течеискания.
Радиографический и радиоскопический методы.
Испытания неметаллических материалов
Испытания строительных материалов и изделий.
Испытания текстильных материалов.
Испытания пластических масс.
Специальные виды испытаний
Испытания на обрабатываемость металлов резанием.
Технологические испытания.
Испытания слесарного инструмента.
Основные сведения о стандартизации, метрологии и контроле качества продукции
Государственные стандарты и метрология.
Стандартизация и качество продукции.
Стандарты на испытания материалов и готовой продукции.
Требования к образцам для испытаний и методы обработки результатов испытаний
Пробы и изготовление из них образцов для испытаний.
Статистическая обработка результатов испытаний.
Оформление результатов испытаний.
Список литературы

Прочностью называется способность металла не поддаваться разрушению под действием внешних нагрузок. Ценность металла как машиностроительного материала наряду с другими свойствами определяется прочностью.

Величина прочности указывает, какая сила необходима, чтобы преодолеть внутреннюю связь между молекулами.

Испытание металлов на прочность при растяжении производится на специальных машинах различной мощности. Эти машины состоят из нагружающего механизма, который создает усилие, производит растяжение испытываемого образца и показывает величину усилия, приложенного к образцу. Механизмы бывают механического и гидравлического действия.

Мощность машин различна и достигает 50 т. На рис. 7, а показано устройство машины, состоящей из станины 2 и зажимов 4, при помощи которых закрепляются испытываемые образцы 3.

Верхний зажим закреплен в станине неподвижно, а нижний при помощи особого механизма при испытании медленно опускается, растягивая образец.




Рис. 7. Испытание металлов на растяжение :

а - прибор для испытания металлов на растяжение; б - образцы для испытания на растяжение: I - круглый, II - плоский

Нагрузка, передаваемая при испытании на образец, может быть определена по положению стрелки прибора на измерительной шкале 1.

Испытание образцов должно всегда проводиться в одинаковых условиях, чтобы полученные результаты можно было сравнивать. Поэтому соответствующими стандартами установлены определенные размеры образцов для испытания.

Стандартными образцами для испытания на растяжение являются образцы круглого и плоского сечений, показанные на рис. 7, б.

Плоские образцы применяют при испытании листов, полосового материала и т. д., а если профиль металла позволяет, то делают круглые образцы.

Пределом прочности (σ b) называется наибольшее напряжение, которое может испытывать материал до его разрушения; предел прочности металла равняется отношению наибольшей нагрузки при испытании образца на разрыв к первоначальной площади поперечного сечения образца, т. е.

σ b = P b /F 0 ,

где Р b - наибольшая нагрузка, предшествующая разрыву образца, кгс;

F 0 - начальная площадь поперечного сечения образца, мм 2 .

В целях безопасной работы машин и сооружений необходимо, чтобы при эксплуатации напряжения в материале не превышали установленного предела пропорциональности, т. е. наибольшего напряжения, при котором не вызываются деформации.

Предел прочности некоторых металлов при испытании на растяжение, кгс/мм 2:

Свинец 1,8

Алюминий 8

Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.

Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла.

Механические методы.

Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).

Виды напряжений.

По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты – сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.

Испытания на растяжение.

Это – один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение – деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение – деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении – это максимальное напряжение, которое металл выдерживает в ходе испытания.

Испытания на ударную вязкость.

Один из самых важных видов динамических испытаний – испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).

Испытания на усталость.

Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений – то растягивающих, то сжимающих.

Испытания на глубокую вытяжку.

Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.

Испытания на ползучесть.

В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.

Определение твердости.

Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость – очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.

Испытания на излом.

В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.

Оптические и физические методы.

Микроскопическое исследование.

Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.

Радиографический контроль.

Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.

Магнитно-порошковый контроль.

Этот метод контроля пригоден лишь для ферромагнитных металлов – железа, никеля, кобальта – и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.

Ультразвуковой контроль.

Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта – трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации.

Специальные методы.

Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов.


Для разных изделий применяются разные виды и марки металлов и сплавов. Выбор обычно основывается на характеристиках материалов. При проектировании любой конструкции учитываются свойства и испытания металлов, которым они были подвержены.

Производимые испытания над разного рода металлами помогают определить механические, термические, химические свойства металлов. Соответственно, в зависимости от выявляемых свойств металла, проводятся и определенные виды испытаний.

О том, какие свойства и испытания металлов имеют большое значение, и какими они бывают мы и поговорим далее.

Свойства металлов.

Каждый вид металла имеет определенный набор свойств - механических, технологических и эксплуатационных, которые характеризуют его способность к нагреву и охлаждению, свариванию, устойчивость к большим нагрузкам и прочее. Наиболее важные из них следующие:

  • литейные - эти свойства металла важны при отливе, для качественных отливок;
  • жидкотекучесть;
  • усадка (т.е. изменение объемов и размеров при охлаждении и затвердевании);
  • ликвация (химический состав может быть неоднородным по объему);
  • свариваемость (важно при проведении сварочных работ, оценивается это свойство уже по готовому сварному соединению);
  • обработка давлением - важно как металл реагирует на внешние нагрузки, не разрушается ли он под давлением;
  • обработка резанием - обозначает поведение металла под воздействием разных режущих инструментов;
  • ударная вязкость;
  • износостойкость - сопротивление металла к поверхностным разрушениям под воздействием трения;
  • коррозионная стойкость - стойкость к воздействию щелочных сред, кислот;
  • жаростойкость - сопротивление окислению под воздействием высоких температур;
  • жаропрочность - материал должен сохранять все свои свойства даже под воздействием высоких температур;
  • хладостойкость - сохранение пластичности металла при низких температурах;
  • антифрикционность - свойство, характеризующееся тем, как металл может прирабатываться к другим материалам.

Все эти свойства выявляются в ходе испытаний: механических, химических и прочих.

Механические испытания металлов.

При проведении таких испытаний на металл оказывают разную нагрузку - динамическую (ударное увеличение напряжения в металле) или статическую (постепенное увеличение напряжения).

В ходе нагрузок в металле могут возникать разные виды напряжения:

  • сдвиговое;
  • растягивающее;
  • сжимающее.

Так, например, при скручивании металла в материале возникает сдвиговое напряжение, тогда как разгибание или сгибания приводят одновременно к сжимающему и растягивающему напряжению.

Согласно этим нагрузкам и возникающему напряжению могут проводиться такие виды механических испытаний:

  • на растяжение;
  • на изгиб;
  • на удар (определяется ударная вязкость металла).

Кроме того механические испытания предполагают проверку на усталость материала (обычно при изгибе), на глубокую вытяжку и ползучесть. Также проводятся испытания на твердость, которые осуществляются методом вдавливания и динамическим способом (на металл скидывают боек с наконечником из алмаза).

Химические испытания металлов.

Методы химических испытаний применяют для того, чтобы определить состав металла, его качество и пр. В ходе таких испытаний обычно выявляется наличие ненужных и нежелательных примесей, а также количество легирующих примесей.

Химические испытания также помогают получить оценку стойкости металла к воздействию разных реагентов.

Один из видов таких испытаний - это селективное воздействие определенными химическими растворами. Это помогает определить такие показатели, как пористость, количество включений, сегрегации и прочее.

Испытания методом контактных отпечатков необходимы для определения уровня содержания в металле фосфора и серы.

Сезонное растрескивание металла определяется с помощью специальных растворов, воздействию которых подвергается материал. Проводится и ряд других испытаний.

Оптические и физические испытания.

В ходе испытаний металл не только подвергают разного рода воздействиям, но и тщательным образом исследуют под микроскопом. Такие исследования позволяют оценить качество металла, его пригодность, структурные характеристики и прочее.

Кроме того металлы подвергаются радиографическому контролю. Эти исследования осуществляются с помощью гамма-излучения и жесткого рентгеновского излучения. Такой контроль позволяет определить имеющиеся дефекты в металле. Часто радиографическому исследованию подвергаются сварные швы.

Существует также ряд других методов контроля, которым подвергается металл. Среди них:

  • Магнитно-порошковый - применяется только для никеля, железа и кобальта, а также их сплавов. Этим методом определяются дефекты некоторых видов стали.
  • Ультразвуковой - также позволяет выявлять дефекты только с помощью импульса ультразвука.
  • Специальные методы - это и прослушивание со стетоскопом, и испытания на циклическую вязкость и пр.

Все эти испытания, в том числе контрольные, очень важны: они помогают определить какие металлы подходят для разных конструкций, каким обработкам можно подвергать материал, какие режимы сварки использовать и прочее.

Поделиться