Приводная система гребного винта надводного судна и способ обеспечения движения и управления по курсу. Судовые энергетические установки и движители

Классификация судов по типу движителя

Судовой движитель– устройство для преобразования механической энергии двигателя или другого источника энергии в работу по перемещению транспортной машины (в данном случае – судна).

На судах используют следующие типы судовых движителей:

1. гребной винт, выполненный по поверхности винта Архимеда (он может иметь 2÷9 лопастей от широкой до узкой формы, симметричные в виде лепестка и изогнутые в виде сабли); гребные винты выполняются фиксированного и регулируемого шага, а их количество может быть от одного до трёх (см. рис. 7.1,а ,б );

2. Гребной винт в насадке (рис. 7.1,в ) – позволяет повысить пропульсивный КПД винта, при этом насадка заменяет руль;

3. соосные противоположно вращающиеся гребные винты (рис. 7.1, г ), позволяющие увеличить эффективность судового движителя (имеют сравнительно сложную конструкцию валопровода и главной передачи);

Рис. 7.1. Судовой движитель: а – гребной винт с неподвижными лопастями (винт фиксированного шага); b – винт регулируемого шага; с – гребной винт в насадке; d – соосные гребные винты

4. винторулевая колонка (см. рис. 7.2), позволяющая исключить руль (она может подниматься для уменьшения осадки судна и опускаться, уменьшая возможность кавитации гребного винта);

Рис. 7.2. Угловая поворотная откидная винторулевая колонка (крыло может быть необязательным)

5. крыльчатый движитель (насадка с поворотными лопастями – для изменения скорости и для реверса) – обычно на речных судах и судах типа река–море (см. рис. 7.3);

Рис. 7.3. Крыльчатый движитель: а – принцип действия; b – движитель Фойта–Шнейдера (вид сбоку); с – движитель Фойта Шнейдера (вид сверху); d – буксир с движителем Фойта–Шнейдера в носовой части судна; е – буксир с движителем Фойта–Шнейдера в кормовой части судна:

1 – Стоп; 2 – Передний ход; 3 – Задний ход; 4 – Поворот на левый борт; 5 – Поворот на левый борт (на заднем ходу); 6 – Поворот на правый борт; 7 – управляющий механизм; 8 – привод; 9 – лопасти; 10 – распределительные рычаги и тяги

6. водомётный движитель (см. рис. 7.4)– для небольших пассажирских и специальных судов (его основное преимущество заключается в закрытости рабочего колеса водомёта от различного рода повреждений);

Рис. 7.4. Водомётный движитель:

1 – движение вперёд (струя воды отбрасывается назад); 2 – движение назад (струя воды отбрасывается вперёд с помощью заслонки)

7. воздушные винты фиксированного и изменяемого шага (см. рис. 7.5) – для СПК, СВП и экранопланов;

Рис. 7.5. Воздушный винт изменяемого шага

активные рули (АР) имеют установленные на них вспомогательные винты, расположенные обычно на задней кромке пера руля (см. рис. 7.6); АР перекладывается с борта на борт на углы до 70÷90° и используется на малых скоростях до 5 уз (при больших скоростях винт АР отключается, и перекладка руля осуществляется в обычных пределах – до 35° на каждый борт).

Рис. 7.6. Активный руль

8. Электродвижущаяся система Azipod (Azimuth Pod – азимутальная гондола), которая включает в себя дизель–гене-ратор, электромотор и винт (рис. 7.7), уменьшая количество механических передач и достигая максимального пропульсивного коэффициента; имеет угол разворота до 360°, что повышает управляемость судна (при этом уменьшается расход топлива на 10÷20 % и вибрация корпуса судна);

9. CRP (contra–rotating propeller) технология – винты располагаются друг против друга и имеют противоположное направление вращения, чем достигается наибольший двигательный эффект (см. рис. 7.8), и которая используется для обеспечения большой скорости доставки груза или пассажиров.

Рис. 7.7. Система Azipod

Рис. 7.8. Contra–rotating propeller (CRP)

10. Раздельные поворотные насадки (РПН) – это стальные кольца, профиль которых представляет элемент крыла (площадь входного отверстия насадки больше площади выходного), агребной винт располагается в наиболее узком её сечении, что повышает его КПД (см. рис. 7.9);РПН поворачивается до 40° на каждый борт, что имеет большую эффективность, чем обычный руль (РПН устанавливаются на двухвинтовых судах и имеют конструкцию привода, позволяющую выполнять раздельную их перекладку, обеспечивая высокие манёвренные характеристики);

Рис. 7.9. Раздельные поворотные насадки

11. гребное колесо – как правило для речных судов на реках с малыми глубинами;

12. подруливающие устройства являются эффективным средством управления носовой (иногда и кормовой) оконечностью судна (см. рис. 7.10);они создают силу тяги в направлении, перпендикулярном диаметральной плоскости судна независимо от работы главных движителей и рулевого устройства;

13. турбореактивный двигатель (см. рис. 7.11) –в котором сжатиерабочего телана входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха икомпрессора, размещённого в тракте двигателя сразу после входного устройства, перед камерой сгорания. Используется на СПК, СВП и экранопланах.

Чтобы судно могло двигаться с постоянной скоростью, к нему нужно приложить движущую силу, равную силе сопротивления при этой скорости и противоположно направленную. В отдельных случаях эта сила создается буксированием, но чаще всего - специальными устройствами, которые называются судовыми движителями .
В соответствии со сложившимися традициями термин «судовые движители», как и ряд других подобных, означает как указанные устройства, так и науку (раздел теории корабля), их изучающую.
Судоходство на Земле существует уже несколько тысячелетий, но во времена парусных (и весельных) судов науки о ходкости судов не было. Скорость парусных судов зависела от скорости ветра, для гребных судов также не требовались какие-либо расчеты. Настоятельная необходимость выполнения расчетов ходкости возникла лишь тогда, когда на судах стали применяться механические двигатели (паровые машины).
Видимо, первыми движителями, которые использовались на плотах и подобных им простейших плавсредствах, были шест и весло. Суда древности были преимущественно весельными, причем у крупнейших из них весла располагались в три ряда, их общее число достигало 300, длина - 15 м, на одном весле работало до 7 чел. Скорость таких судов была около 5 уз. Пика своего расцвета весельные суда достигли много веков назад. В настоящее время весла используются в качестве основного движителя лишь на спортивных судах, рабочих и спасательных шлюпках и других мелких судах.
Другим древним движителем был парус, иногда в комбинации с веслами. Парусные суда оказались более совершенными, они использовали энергию внешней среды - воздуха, не требуя размещения большого числа гребцов. Первые парусники могли двигаться по ветру, но по мере совершенствования парусного вооружения люди научились, двигаясь галсами, перемещаться в требуемом направлении, независимо от направления ветра. Наивысшего расцвета парусные суда достигли примерно в конце 19 в., их скорость при благоприятном ветре достигала 20 уз. Но появление и развитие механических установок на судах привело к постепенному переходу от парусных судов к пароходам. Парус сохранился на спортивных, учебных судах в качестве основного, на промысловых, некоторых исследовательских и т. п. судах - в качестве вспомогательного движителя.
В последние десятилетия в мировом судостроении наблюдается рост интереса к парусам как основному или, чаще, дополнительному типу движителей. Этот интерес обусловлен двумя главными причинами: возможностью экономии топлива при высоких ценах на него и экологической чистотой. Применение парусного вооружения позволяет значительно уменьшить мощность главного двигателя (дизеля) без существенной потери скорости. Достижения современной науки позволяют механизировать установку и уборку парусов, управление ими с целью получения наивысшей скорости хода в требуемом направлении, снизить массу при достаточной прочности и долговечности. В различных судостроительных странах, а также в России и Украине, выполнены разработки парусного вооружения судов, в том числе большого водоизмещения, однако о широком использовании парусов на транспортном флоте говорить преждевременно.
В глубокой древности, еще до нашей эры, было изобретено гребное колесо, которое приводилось во вращение животными (быками). Но колесные суда были вытеснены парусными. На новом уровне гребные колеса возродились в самом начале 19 в. (на судне «Клермонт» в 1802 г.; в России первым парусным судном считается построенная в 1815 г. «Елизавета»). Первые гребные колеса имели обод и неподвижные лопасти - плицы; КПД колес был сравнительно мал, глубина погружения -в несколько раз меньше диаметра. В 1829 г. было предложено колесо с поворотными плицами, что позволило повысить КПД и уменьшить диаметр колес; повышение оборотов двигателей (паровых машин) ведет к уменьшению их размеров.
Наиболее распространенный, эффективный и сравнительно простой движитель - гребной винт . Идея судового гребного винта в виде шнека, подобно применявшемуся в древности винту Архимеда (для перекачки жидкостей), впервые возникла у Леонардо да Винчи в 15 в., но в ту пору она не нашла применения. В 1752 г. винт в виде двухзаходного червяка предложил Д. Бернулли, но КПД такого движителя оказался невелик. Как указывают в литературе, случай помог усовершенствовать конструкцию винта: одно судно, оборудованное деревянным винтом, коснулось им грунта, значительная часть винта отломилась и всплыла, но, к удивлению экипажа судна, оно увеличило ход. С тех пор было предложено множество усовершенствований винтов. Менялись их размеры, формы контура и сечений лопастей и другие характеристики. Некоторые усовершенствования продолжают появляться до сих пор.
В середине 17 в. появились первые водометные движители. Водометный движитель представляет собой систему водопроточных каналов (в частном случае - один канал), расположенных внутри корпуса судна, по которым перемещается забортная вода с помощью специального насоса, чаще всего осевого (винт в трубе). С помощью заслонок поток воды направляется в те или иные каналы (в случае одного канала изменяется направление движения струи, выходящей из канала в корме), что позволяет изменять направление движения судна.
К характерным особенностям водометных движителей можно отнести хорошую защищенность рабочего органа (расположенного в канале внутри корпуса; входное отверстие канала снабжено решеткой, которая препятствует попаданию крупных предметов в канал) и прекрасные маневренные качества (возможность двигаться передним и задним ходом, разворачиваться почти на месте благодаря соответствующей установке заслонок). Но эти движители отличаются большой массой (в которую входит система водопроточных каналов с водой внутри корпуса), занимают большой объем, затрудняя размещение полезного груза, обладают сравнительно невысоким КПД. Строго говоря, КПД водометного движителя - понятие достаточно условное, поскольку упор такого движителя создается на корпусе и не всегда удается точно разделить силы сопротивления и упора. Грубо ориентировочно, КПД обычного водометного движителя может составлять примерно 30 %.
Долгое время водометные движители мало применялись на судах. Считалось, что область их применения ограничивается сравнительно тихоходными судами, плавающими на мелководном или засоренном фарватере (например, такие суда использовались на лесосплаве). Но примерно с середины XX в. их популярность стала возрастать. Этому способствовали два обстоятельства. Во-первых, вместо развитой системы водопроточных каналов было предложено устраивать один короткий канал в кормовой оконечности судна, обеспечивая управление судном с помощью заслонок, отклоняющих струю движителя в нужную сторону. Во-вторых, было показано, что КПД водометного движителя на быстроходных судах может достигать 60 % и более, тогда как у обычных гребных винтов в этих условиях он может снижаться из-за кавитации.
Сравнительно недавно был предложен своеобразный водометный движитель для подводных лодок, торпед и других плавучих объектов, имеющих кормовую оконечность в форме тела вращения. Этот движитель представляет собой ряд лопастей, вращающихся вместе с кольцом, установленным заподлицо с наружной обшивкой. Снаружи установлено кольцо типа направляющей насадки; от гребного винта в насадке эта конструкция отличается тем, что винт в насадке располагается за пределами корпуса.
Около 1930 г. были предложены крыльчатые движители. Эти движители состоят из барабана, установленного внутри корпуса заподлицо с днищем и имеющего вертикальную или почти вертикальную ось вращения, и нескольких лопастей, расположенных по окружности барабана. При вращении барабана лопасти совершают колебательные движения, в результате чего создается упор, направление которого может быть произвольным, а величина - изменяться от нуля до максимального значения.
Крыльчатый движитель одновременно является прекрасным средством управления. Судно, оборудованное двумя крыльчатыми движителями, расположенными в оконечностях, может двигаться передним или задним ходом, лагом, разворачиваться на месте. Но такой движитель сравнительно сложный и громоздкий, требует наличия протяженного участка плоского днища в районе установки, неудобен подвод мощности к нему, при скоростях свыше 20 уз возникает кавитация. КПД крыльчатого движителя меньше, чем гребного винта.
Новые, иногда довольно экзотические конструкции судовых движителей продолжают появляться до сих пор. Среди наиболее известных можно назвать магнитогидродинамический (МГД) движитель, имеющий канал, окруженный магнитной обмоткой, по которой течет постоянный ток. Как известно из физики, катушка с током выталкивает расположенный внутри нее проводник, каким является морская вода. Реакция отбрасываемой струи движет судно вперед.
Разработкой МГД-движителей занимаются в ряде стран, например в Японии. Наиболее серьезные проблемы связаны со слабой проводимостью морской воды, что требует использования сверхпроводящих обмоток. КПД испытанных моделей МГД-движителей крайне мал, он не достигает 10 %. К преимуществам таких движителей можно отнести прямое преобразование электроэнергии в движение (не требуется двигатель), отсутствие движущихся частей, малую шумность.
Прямое преобразование электроэнергии в движение потока воды осуществляется также в электрогидравлическом движителе. Внутри расширяющейся к корме трубы имеется своеобразный отражатель с отверстиями для прохода воды и определенным образом расположенными электродами, между которыми возникают электрические разряды. Вода выталкивается из преобразователя в корму, через отверстия поступает новая, и процесс повторяется, причем движение получается почти непрерывным.
Для подводных лодок был предложен роторный движитель, состоящий из обода, расположенного в плоскости шпангоута в средней части корпуса и имеющего большое количество лопастей. Заметим, что подобный движитель с насадкой выше назван как разновидность водометного движителя. Лопасти имеют возможность поворачиваться (наподобие винта регулируемого шага, но за время одного оборота ротора углы их установки могут изменяться). Такие движители называют движителями с циклической перекладкой лопастей. Роторов на судне должно быть не меньше двух, вращающихся в разные стороны, иначе появляется большой крутящий момент, передаваемый на корпус в виде кренящего. При этом лодка может двигаться с различными скоростями, маневрировать в горизонтальной и вертикальной плоскостях без установки вертикальных и горизонтальных рулей, что уменьшает сопротивление выступающих частей.
Известен также своеобразный способ движения по воде - с помощью одного или нескольких колес, катящихся по воде («суда на колесах»). Колеса делаются гладкими и лишь незначительно погружаются в воду. Такой способ движения в какой-то мере подобен глиссированию, причем, как считают специалисты, он может быть достаточно эффективным с гидродинамической точки зрения.
В начале 20 в. появились башенные движители («роторы Флеттнера ») в виде цилиндрических башен с вертикальной осью вращения, которые приводились во вращение маломощными двигателями, установленными под верхней палубой. Принцип работы ротора Флеттнера основан на эффекте Магнуса, который заключается в появлении подъемной силы на цилиндре, вращающемся в потоке жидкости или газа. Величину этой силы можно рассчитать по формуле Жуковского:

где р - плотность среды (воздуха); v - скорость набегающего потока (ветра); Г - циркуляция скорости на контуре профиля (цилиндра), в данном случае равная произведению длины окружности ротора на линейную скорость его поверхности; l - длина (высота ротора).

Упор ротора направлен перпендикулярно скорости ветра. Эти движители эффективнее парусов (мощность двигателя в десятки раз меньше мощности, «извлекаемой из воздуха»), но не могут убираться, чем представляют опасность при сильном ветре.

Известный советский кораблестроитель профессор В. Г. Павленко предложил устанавливать по бортам судна специальные плавники, получившие название «плавники Павленко», которые являются вспомогательным средством движения. При плавании на волнении, когда скорость судна снижается из-за увеличения сопротивления и других причин, плавники, изгибаясь от давления воды, обусловленного бортовой качкой, создают дополнительный упор, увеличивая скорость судна. Такие плавники, насколько нам известно, не получили распространения на флоте, но управляемые крылья, устанавливаемые в районе скул в средней части многих судов с целью уменьшения бортовой качки, способствуют и некоторому увеличению скорости хода на волнении.

Этот обзор не претендует на полноту, но позволяет судить о том, насколько разнообразны могут быть судовые движители. Предлагалось множество других конструкций, некоторые из них были осуществлены практически, преимущественно на небольших судах или плавучих средствах и в единичных экземплярах, другие же существовали только на бумаге.

Долгое время характеристики судовых движителей не рассчитывались, а выбирались по опыту, на глазок. Для парусных судов проблемы расчета парусов вообще не существовало: скорость судна зависела от скорости и направления ветра. Но с появлением паровых машин возникла необходимость в выполнении расчетов ходкости с определением и сопротивления движению, и характеристик движителей, которые должны были соответствовать установленным двигателям. Первая теоретическая работа, посвященная расчету гребного весла, была опубликована Л. Эйлером в его книге «Полное умозрение строения и вождения кораблей» в 1778 г. Весла, рассмотренные Л. Эйлером, отличались своеобразием конструкции и принципа действия. Около 1865 г. англичане Ранкин и Фруд создали теорию идеального движителя, с основными положениями которой мы скоро познакомимся. В начале 20 в. (примерно в период 1910-1920 гг.) появилось несколько теорий, относящихся к гребным винтам. Среди них можно назвать паральную теорию (российский профессор Брикс, 1914-1922 гг.), струйную теорию, в создание которой внесли вклад также отечественные ученые Джевецкий, Рузский, Сабинин, Юрьев. Наиболее известной и совершенной явилась вихревая теория гребного винта, созданная «дедушкой русской авиации» Н.Е. Жуковским в 1912-1918 гг. В последующие годы теория судовых движителей развивалась по многим направлениям, которые мы не рассматриваем. Назовем лишь вопросы взаимодействия винта и корпуса, проблемы кавитации гребных винтов, работу винтов в неравномерном потоке, винты регулируемого шага и в насадках.


Движителем называется преобразователь энергии, предназначенный для создания полезной тяги Т Е. Последняя уравновешивает сопротивление R и обеспечивает судну установившееся движение. При этом в общем случае должно выполняться условие

где Z- количество движителей; Т Еi -- полезная тяга i-го движителя.

Если все движители одинаковы, то (16.1) преобразуется к виду ZТ Е =R; для одновинтового судна это условие записывается Т Е = R.

К собственному сопротивлению судов специального типа (буксиров, траулеров) необходимо добавить сопротивление буксируемого судна или устройства: .

По принципу действия судовые движители принято разделять на два типа: активные и гидрореактивные. Первые для создания полезной тяги используют энергию движущихся масс воздуха, вторые -- преобразуют энергию механической установки в энергию поступательного движения судна. Для создания полезной тяги эти движители используют реакцию отброшенных масс жидкости. Работа гидрореактивных движителей, как и любых преобразователей энергии, сопровождается непроизводительными потерями, в силу чего их коэффициент полезного действия (КПД) всегда меньше единицы.

Активные движители. Особенность всех движителей данного типа заключается в том, что они либо вообще не потребляют энергии от судовых источников, либо затрачивают ее значительно меньше, чем создают для движения судна. Здесь не нарушаются фундаментальные законы, физики -- недостающая энергия отбирается от ветра. Самым древним активным движителем является парус, сыгравший огромную роль в становлении и развитии цивилизации. В конце прошлого века парус был вытеснен гидроактивными движителями, приводимыми в движение механической установкой. Это существенно расширило возможности флота, работа которого теперь не зависела от метеорологических условий.

В последнее время наблюдается возрождение интереса к активным движителям -- диалектическая спираль вышла на новый виток. Основных причин тому две: все большее внимание уделяется энергосберегающим технологиям и проблемам охраны окружающей среды: с точки зрения экологической чистоты активные движители вне конкуренции. Сегодня в мире насчитывается уже несколько десятков морских транспортных судов, оборудованных парусами, используемыми чаще всего в качестве вспомогательных движителей. Среди этих судов -- современные рудовозы японской постройки дедвейтом более 30 тыс. т. Кроме различных типов парусов (мягких, жестких, объемных и т. д.) изучаются возможности роторных и турбинных активных движителей. Первый представляет собой принудительно вращаемый вертикальный цилиндр, создающий в потоке воздуха подъемную силу (эффект Магнуса), проекция которой на направление движения и создает полезную тягу.

Роторный движитель -- один из немногих судовых активных, на работу которого затрачивается энергия, однако она существенно меньше, чем этот движитель отдает на движение судна. Ветротурбина вращается под действием потока воздуха и может служить источником энергии для судового движителя (например, гребного винта).

Гидрореактивные движители. Гребное весло -- самый древний из них, использующий для создания полезной тяги мускульную энергию человека. Сегодня он находит применение лишь на малых прогулочных и спортивных судах. Гребное колесо -- вопреки расхожему мнению имеет также весьма внушительную историю. Суда, оборудованные этим движителем, были известны в Древнем Египте и Древней Греции. В качестве источника энергии на них использовались люди или животные, обычно ходящие по кругу быки. Не выдержав конкуренции с веслами, гребные колеса в античные времена сошли со сцены, чтобы вновь возродиться в XVIII в. в качестве движителя паровых судов. Сегодня гребные колеса находят очень ограниченное применение -- в основном на буксирах, эксплуатируемых в мелководных внутренних водоемах. Основные недостатки гребных колес: громоздкость, высокая удельная масса (15--30 кг/кВт), рыскание судна при качке.

Гребной винт (рисунок 16.1)--движитель, нашедший наибольшее распространение на современных судах всех типов, что объясняется рядом достоинств, присущих ему:

  • 1) высоким КПД, достигающим з 0 = 0,70,75;
  • 2) простотой конструкции и небольшой удельной массой (0,5 - 2 кг/кВт);
  • 3) слабым реагированием на качку судна;
  • 4) возможностью использования в качестве привода двигателей внутреннего сгорания с прямой (т.е. без редуктора) передачей мощности;
  • 5) отсутствием необходимости изменять форму корпуса при установке движителя.

Рисунок 16.1 Гребной винт

Обычно гребные винты размещаются в кормовой оконечности судна, т. е. относятся к категории толкающих. Однако на судах некоторых типов (отдельных ледоколах, СДП) могут использоваться и тянущие винты.

Большинство морских транспортных судов имеют один гребной винт, но на некоторых крупных и относительно быстроходных судах и кораблях число движителей может доходить до четырех. История знает пример, когда на судне «Турбиния» было установлено девять гребных винтов -- по три на каждом из трех гребных валов.

Наряду с гребными винтами фиксированного шага (ВФШ), лопасти которых закреплены, широкое применение в последнее время находят винты регулируемого шага (ВРШ), имеющие поворотные лопасти. ВФШ иногда выполняются со съемными лопастями (на ледоколах, судах активного ледового плавания).

Крыльчатый движитель занимает особое место в ряду гидрореактивных движителей -- он одновременно может служить и органом управления. Этот движитель представляет собой барабан, установленный заподлицо с днищем (рисунок 16.2). По окружности барабана располагаются лопасти -- крылообразные тела, число которых изменяется от четырех до восьми. Барабан вращается вокруг вертикальной оси, лопасти совершают колебательные движения относительно барабана. Таким образом лопасть одновременно участвует в трех движениях -- поступательном, вместе с судном, вращательном, вместе с барабаном, и колебательном относительно него.

Рисунок 16.2 Крыльчатый движитель

В зависимости от закона управления лопастями крыльчатый движитель может создавать упор в любом направлении в плоскости своего диска, т.е. служить и органом управления. Судно, оборудованное двумя крыльчатыми движителями, может перемещаться лагом, разворачиваться на месте. Кроме того, этот движитель позволяет производить реверс судна без реверса механической установки. Повышенные маневренные качества - основное достоинство судов с крыльчатым движителем. Вместе с тем, на всех режимах движения этот движитель может быть приведен в соответствие с двигателем. Тем не менее, крыльчатый движитель не находит широкого применения, так как обладает рядом существенных недостатков:

  • 1) сложностью конструкции и большой (5 -- 20 кг/кВт) удельной массой;
  • 2) ограничением передаваемой на один движитель мощности;
  • 3) сравнительно невысоким КПД;
  • 4) ограничением скорости из-за опасности кавитации.

Водометный движитель имеет водопроточный канал и насос, засасывающий воду через приемное отверстие, ускоряющий ее и выбрасывающий через сопло. Рабочим органом водометного движителя чаще всего является осевой насос -- винт в трубе. Специальное реверсивно-рулевое устройство изменяет направление струи, истекающей из сопла, что обеспечивает судну необходимую маневренность. Водометный движитель может иметь подводный, полуподводный либо атмосферный выброс струи. Первые два типа находят применение на водоизмещающих судах, эксплуатирующихся на мелководных или засоренных (лесосплав) водоемах. Суда эти, как правило, характеризуются умеренными скоростями движения, при которых КПД водометных движителей существенно ниже, чем КПД гребных винтов.

Водометы с атмосферным выбросом (рисунок 16.3) в последнее время используются на быстроходных СДП -- глиссирующих судах, СПК, СВП. Дело в том, что с ростом скорости КПД водометного движителя увеличивается.

Этим свойством обладают все гидрореактивные движители, но до определенного предела, пока отсутствует кавитация. Водометный движитель единственный, у которого кавитация может быть отдалена до скоростей v S = 100 уз и более. Это достигается за счет установки друг за другом нескольких ступеней (насосов), нагрузка между которыми распределяется так, чтобы кавитация отсутствовала. Поэтому водометный движитель, уступающий по эффективности гребному винту при умеренных скоростях, с их ростом до v s = 55 - 60 уз имеет КПД, превышающий таковой у всех других движителей.

Рисунок 16.3 Водометный движитель быстроходного судна

Перечисленные выше гидрореактивные движители относятся к категории лопастных -- в качестве рабочих элементов все они имеют крыловидные тела -- лопасти.

Газоводометный движитель в этом плане является исключением. Рабочим телом в нем служит газ (сжатый воздух либо пар высоких параметров). Поступая в профилированный водопроточный канал, газ расширяется и с повышенной скоростью выбрасывает из сопла воду, создавая полезную тягу. Неоспоримые преимущества газоводометного движителя:

  • 1) простота подвода энергии (исключаются двигатель, редуктор, валопровод);
  • 2) отсутствие вращающихся деталей и соответственно опасности их кавитации;
  • 3) весьма низкие массогабаритные характеристики.

Однако газоводометный движитель в связи с низкой эффективностью пока не находит применения -- его КПД не превышает 30--40 % и имеет тенденцию к падению с ростом скорости. Иногда, в силу перечисленных достоинств, оправдано использование газоводометного движителя в качестве второй: ступени обычного водомета.

Выше перечислены только основные типы движителей. Однако существует большое количество конструкций, не находящих широкого применения в силу несовершенства, сложности, недостаточной разработанности. Среди них можно назвать гусеничный и шнековый движители, «машущее крыло», «рыбий хвост», а также проекты «экзотических» движителей типа воздушных зме-ев и аэростатов, запускаемых в верхние слои атмосферы, и т. д.

Краткие сведения из теории движителей. Теория идеального движителя. Все гидрореактивные движители действуют по одному принципу, поэтому рассмотрим наиболее общие закономерности, характеризующие их работу. Этой цели служит теория идеального движителя, в которой приняты следующие допущения:

  • 1) жидкость идеальная, безграничная, несжимаемая;
  • 2) движитель -- тонкий проницаемый диск;
  • 3) скорость равномерно распределена в поперечном сечении струи и в диске движителя;
  • 4) упор создается за счет подвода к движителю внешней энергии, обеспечивающей скачок давления в его диске; скорость в струе, под действием этого скачка, изменяется непрерывно.

Потери мощности происходят только из-за увеличения кинетической энергии жидкости, протекающей в трубке тока, охватывающей движитель, т. е. на создание так называемых вызванных осевых скоростей. В силу первого допущения отсутствуют вязкостные потери, в силу второго не учитывают конструктивные особенности реального движителя и потери энергии, связанные с ними.

На бесконечности перед движителем (рисунок 16.4, сечение I--I) скорость и давление в струе такие, как и в окружающей жидкости.

Рисунок 16.4 Схема идеального движителя

На бесконечности за движителем (сечение IV--IV) скорость достигла своего наибольшего значения, а давление выравнялось с давлением в окружающей жидкости. На границе струи имеет место разрыв скорости.

Создаваемый идеальным движителем упор

где р 1 ,р 2 -- давления в струе перед и за движителем; площадь гидравлического сечения движителя; S- его диаметр.

Перепад давлений Ар определим, записав уравнение Бернулли для линии тока от сечения I-- I до сечения II--II, расположенного непосредственно перед диском, движителя, а также от сечения III--III, сразу за диском, до сечения IV-- IV далеко на бесконечности за ним (см. рисунок 16.4)

где х А и х s - скорости в струе на бесконечности перед движителем и в его диске соответственно, - вызванная осевая скорость на бесконечности за движителем.

Сопоставляя (16.3) и (16.4), находим скачок давлений в диске движителя

а затем и его упор

В соответствии с законом количества движения этот же упор можно представить в виде

где т - масса жидкости, протекающая через диск движителя в единицу времени. Приравняв (16.6) и (16.7), получим

вызванная осевая скорость в диске движителя.

Вывод (16.9), справедливый для любого гидрореактивного движителя в идеальной жидкости, в дальнейшем будет широко использоваться.

Полезная мощность идеального движителя

затраченная включает и приращение кинетической энергии жидкости в струе:

Тогда КПД

и эффективность идеального движителя снижается с ростом вызванной скорости.

Возможности анализа (16.12) ограничены, поэтому введем в рассмотрение коэффициент нагрузки движителя по упору

Приравняв упор, определяемый из (4.6) и (4.13), получим

Решая квадратное уравнение (4.14) с учетом находим безразмерную осевую вызванную скорость

Подставляя (4.15) в (4.12), определяем КПД идеального движителя

Таким образом, эффективность идеального движителя увеличивается с уменьшением коэффициента его нагрузки. Последнее возможно за счет снижения упора, увеличения скорости движения, плотности жидкости и площади гидравлического сечения движителя [см. (16.13)]. Для наиболее важного с практической точки зрения случая, когда величины Т и v A заданы, КПД движителя однозначно определяется его диаметром и возрастает с его ростом. Вследствие различий в плотности среды КПД движителя, работающего в воде больше, чем в воздухе.

Используя (16.15) и (16.9), можно найти максимальное сужение струи

которое в пределе (при С Тд --> составит ().

Работа реального движителя сопровождается дополнительными потерями энергии, идущими на преодоление сил вязкости, закручивание потока и т. д. Поэтому и КПД реального движителя всегда ниже, чем у идеального:

где к о < 1 коэффициент качества.

На рисунке 16.5 представлены КПД идеального и реального движителя в функции от коэффициента нагрузки. Заштрихованная область характеризует дополнительные потери энергии. Можно выделить две зоны - в первой (0 < С та < С ТA0) характер изменения КПД движителей качественно различен, во второй (С та > С тао) он одинаков, при С та = С тао = 0,30,35 КПД реального движителя имеет максимум. Резкое падение з 0 при С та 0 объясняется не учитываемыми в теории идеального движителя вязкостными потерями. Дело в том, что при заданных Т и v A условие С ТA 0 практически означает D, а следовательно и безграничный рост сил трения. Судовые движители обычно работают с коэффициентами нагрузки, существенно большими, чем С ТA0 0,35, а следовательно на них могут быть распространены выводы теории идеального движителя относительно характера зависимости КПД от С ТA .

Рисунок 16.5 КПД идеального и реального движителей

Выражение (16.18) позволяет сопоставлять эффективность различных типов движителей. Для гребных винтов к 0mах = 0,80 и имеет место при С ТA С ТA0 .

Пример 16.1. Найдем коэффициент качества гребного винта судна «Инженер». Дополнительно известно (см. § 4.12) D = 6,42 м; Т = 1410 кН; v А = 8,5 м/с; з 0 = 0,630.

По (16.13) определяем коэффициент нагрузки:

и по (16.16), рассчитываем КПД идеального движителя

Тогда коэффициент качества (16.18)

Пример 16.2. Определим КПД идеального движителя, работающего в воздухе. Исходные данные те же, что и в примере 16.1.

Принимая рА = 1,23 * 103 т/м3, находим

Пример 16.3. Рассчитаем диаметр воздушного идеального движителя, эквивалентного по КПД, движителю, работающему в воде.

Имеем (см. пример 16.1) , С ТА = 1,05, тогда

Примеры 16.2 и 16.3 наглядно объясняют, почему на кораблях и судах не устанавливают воздушные винты: при приемлемых габаритах их КПД будет на порядок ниже, чем КПД гребных винтов, а для обеспечения эквивалентного КПД диаметр воздушного винта должен быть одного порядка с длиной судна, что неприемлемо.

Исключение составляют СВПА и СЭП, вследствие амфибийности которых установка гидравлических движителей невозможна. Однако и КПД воздушных винтов у этих судов достаточно высок. Причина -- относительно большие габариты винтов и существенно большие скорости движения.

Для справки: лучшие воздушные винты самолетов имеют КПД з 0 =0,80,84, что больше, чем у гребных винтов в этом случае нет необходимости принимать меры для устранения кавитации.

Основы теории крыла. Рабочими элементами большинства судовых движителей служат лопасти, действующие по принципу несущего крыла. При движении крыла в жидкости на нем возникают подъемная сила У и сила профильного сопротивления X. Первая из этих сил нормальна к скорости, вторая направлена вдоль нее. В безграничной жидкости профильное сопротивление имеет чисто вязкостную природу.

Гидродинамические характеристики (ГДХ) крыла представляют в виде безразмерных коэффициентов подъемной силы Су и сопротивления Сх

где S - площадь крыла в плане; v -- скорость движения.

Основные геометрические характеристики крыла (рисунок 16.6): хорда b, максимальная толщина профиля е, стрелка прогиба е с. Последние величины чаще используются в безразмерном виде: b= е/b и д с = е с /b и соответственно называются относительной толщиной и относительной кривизной (стрелкой прогиба).

Рисунок 16.6 Профиль крыла

Рисунок 16.7 Гидродинамические характеристики крыла.

Крыло может иметь авиационный либо сегментный профиль сечения, в первом случае максимальная толщина располагается на расстоянии 1b/3 от входящей кромки, во втором 1=0,5b. Для профиля заданной формы ГДХ зависят только от угла атаки а (рисунок 16.7). В общем случае д с > 0, соответственно и угол нулевой подъемной силы б 0 > 0. Коэффициент подъемной силы увеличивается вплоть до критического угла атаки б =б кр, при котором происходит отрыв потока, наблюдается резкое падение Су и рост коэффициента сопротивления С Х. Эффективность крыла определяется его качеством К = С у /С х которое имеет максимум при небольших положительных углах атаки.

В теории движителей часто используется обратное качество профиля в идеальной жидкости е = 0.

СУДОВЫЕ ДВИЖИТЕЛИ ОБЩАЯ КЛАССИФИКАЦИЯ ДВИЖИТЕЛЕЙ

Для приведения судна в движение с заданной скоростью к нему необходимо приложить усилие, равное по величине и противоположное по направлению силе сопротивления среды (воды и воздуха). Такая постоянно действующая на судно сила может быть создана при помощи различных продолжительно работающих источников энергии: мускулов человека, ветра и разного рода двигателей. Однако наличия только источника энергии для движения недостаточно, необходимо передать эту энергию судну в виде работы постоянной силы. Для преобразования энергии двигателей в энергию поступательного движения судна служат специальные механизмы, называемые движителями.

Чем выше эффективность судового движителя, тем совершеннее происходит процесс преобразования затрачиваемой энергии, тем больше скорость судна, тем меньше расход топ­лива при той же мощности энергетической установки.

Гребное колесо является полупогруженным движителем, у которого рабочим органом служат лопасти (плицы). Находясь часть своего пути в воде, плицы сообщают ей ускорения и воспринимают вследствие этого реактивную силу упора. Гребные колеса вращаются вокруг горизонтальной оси, которая проходит поперек судна над поверхностью воды. В начальной стадии развития гребных колес на них применялись неподвижные плицы. Сейчас, как правило, используются только поворотные плицы, обеспечивающие более высокий КПД (до 0,50 – 0,60). виде работы постоянной силы. Для преобразования энергии двигателей в энергию поступательного движения судна служат специальные механизмы, называемые движителями.

Чем выше эффективность судового движителя, тем совершеннее происходит процесс преобразования затрачиваемой энергии, тем больше скорость судна, тем меньше расход топлива при той же мощности энергетической установки.

Движители разделяются на лопастные и водометные. Применяются четыре типа лопастных движителей: гребное весло, гребное колесо, гребной винт, крыльчатый движитель.

Гребное весло является наиболее примитивным типом движителя; оно появилось на заре человеческой культуры и в настоящее время применяется только на шлюпках и спортивных судах.

Гребное колесо является полупогруженным движителем, у которого рабочим органом служат лопасти (плицы). Находясь часть своего пути в воде, плицы сообщают ей ускорения и воспринимают вследствие этого реактивную силу упора.

Гребные колеса вращаются вокруг горизонтальной оси, которая проходит поперек судна над поверхностью воды. В начальной стадии развития гребных колес на них применялись неподвиж­ные плицы. Сейчас, как правило, исползуются только поворотные плицы, обеспечивающие более высокий КПД (до 0,50-0,60). Гребные колеса - сложный, тяжелый и дорогой тип движителя. Они не приспособлены для работы в условиях морского волнения. Поэтому в настоящее время они применяются иногда, например, на речных буксирах и речных пассажирских судах, плавающих на мелководье.

Гребной винт представляет собой конструкцию в виде ступицы с размещенными на ней лопастями, которые расположен


ы радиально на равных угловых расстояниях друг от друга. Гребные винты изготовляются цельнолитыми или со съемными лопастями.

Различают также винты фиксированного шага (ВФШ) (рис. 3.1, а) и регулируемого шага (ВРШ) (рис. 3.1, б), а также соосные гребные винты (рис. 3.2) и винты «тандем» (см. рис. 3.19). Гребные винты располагаются обычно в корме и только у некоторых специальных типов судов - в носу (у ледоколов и паромов челночного типа). Простота конструкции и передачи крутящего момента на движитель, малое влияние волнения на его гидродинамическую эффективность и ряд других преимуществ обеспечили гребному винту наибольшее распространение среди движителей на морских судах.

Конструктивные особенности гребных винтов фиксированного и регулируемого шага изложены в § 20.

Крыльчатый движитель представляет собой диск, установ­ленный заподлицо с плоской частью подзора кормы. В воде находятся только рабочие детали движителя - крылообразные вертикальные лопасти числом 4-8, расположенные по окружности диска на равных расстояниях одна от другой (рис. 3.3). Если к хордам профилей крыльев провести нормали, то они все пересекутся в единой точке, расположенной эксцентрично относительно центра диска и называемой центром управления N (рис. 3.4). При вращении диска лопасти устанавливаются в определенное положение относительно потока, совершая по отношению к диску колебательные движения вокруг вертикальной оси. Закон этого колебательного движения выбирается таким, чтобы каждая лопасть за время полного оборота диска созда­вала силу, направленную всегда в сторону движения судна. Оси всех лопастей совершают движение по циклоиде, и каждая лопасть обтекается циклоидальным (криволинейным) потоком. Это достигается перемещением центра N вдоль диаметра движителя. Меняя положение точки N, можно создавать силы различной величины. Закон поворота лопастей при вращении диска должен быть таким, чтобы в первой половине окружности диска, обращенной в нос, лопасти становились входящими кромками наружу диска, а во второй половине - внутрь.

При таком законе движения ни одна лопасть (в любом по­ложении на окружности) не создает силы, обратной по отноше­нию к направлению движения. Перемещением центра управле­ния в стороны от основного диаметра при неизменном направлении вращения можно получить любые направления сил упора движителя. Таким образом, без реверсирования двигателя можно изменить направление движения судна на обратное,


Рис 3 4 Схема сил при движении судна с крыльчатым движителем: а - передний ход; б - поворот налево; в - поворот направо; г -движение лагом при двух работающих движителях

а также объединить в одном устройстве функции движителя

и рулевого органа.

Изменение положения центра управления N относительно центра диска 0 обычно осуществляется дистанционно с мостика.

На рис. 3.4 приведены схемы сил, развиваемых на крыльча-том движителе при изменении эксцентриситета и обеспечиваю­щих движение судна прямо и повороты налево и направо (рис. 3.4, б, в).

При установке на судне двух крыльчатых движителей оно получает возможность двигаться лагом (рис. 3.4, г). Благодаря этому свойству крыльчатые движители устанавливают на пор­товых буксирах, паромах, плавучих кранах и других судах, для которых характерны высокие маневренные качества. Крыльча­тые движители широко используются также в качестве подру­ливающих устройств.


теорией идеального движителя. Водометным движителем называют размещенный внутри корпуса комплекс, состоящий из водопроточных труб (или ка­налов) и насосов, которые засасывают воду из приемного от­верстия в днище судна и выбрасывают ее через отливной водо­провод. Реакция струи, отбрасываемой движителем с повышен­ной скоростью, является силой, движущей судно. Различают водометные движители с выбросом струи в воду и в атмосферу (рис. 3.5). Чтобы избежать засасывания посторонних предме­тов, приемное отверстие канала защищают специальной сеткой. В зависимости от конструкции насосной установки различают водометные движители с центробежными насосами и с осевыми пропеллерными насосами. Водометные движители широко ис­пользуются в речных условиях, особенно на мелководье. В мор­ских условиях они применяются в качестве подруливающих устройств.

§ 18. ОСНОВЫ ТЕОРИИ ИДЕАЛЬНОГО ДВИЖИТЕЛЯ

Чтобы установить общие закономерности работы всех дви­жителей гидравлического типа, определить верхнюю границу их КПД и выявить условия повышения эффективности, пользу­ются теорией идеального движителя.

Идеальным, называется схематизированный движитель, ра­бота которого сопровождается только потерями на непрерывное приращение скоростей жидкости в его струе, направленной про­тивоположно направлению движения судна.

В теории идеального движителя приняты следующие допу­щения:


1. Жидкость предполагается идеальной и безграничной, вследствие этого струя движителя простирается далеко за ним, а движение жидкости считается установившимся.

2. Движитель представляет собой тонкий проницаемый диск, который способен вызвать непрерывное приращение ско­рости потока за счет скачка давлений, являющегося причиной появления упора.

3. Струя движителя имеет резко очерченные границы, отде­ляющие ее от всего потока, и принимает цилиндрическую форму далеко за движителем.

4. Движитель представляет собой тонкий проницаемый диск, который способен вызвать непрерывное приращение ско­рости потока за счет скачка давлений, являющегося причиной появления упора.

5. Струя движителя имеет резко очерченные границы, отде­ляющие ее от всего потока, и принимает цилиндрическую форму далеко за движителем.

Важным параметром, характеризующим действие идеального движителя, является площадь его диска, называемая гидравли­ческим сечением Р р. Изобразим движение жидкости в системе координат, связанной с движителем (рис. 3.6).

Пусть v p и р и -соответственно скорость и давление в невоз­мущенной жидкости с плотностью р; v s - скорость в плоскости движителя; р\ и р 2 - давление непосредственно перед движи­телем и за ним. Будем полагать, что скорость, вызванная дви­жителем на бесконечности за ним, равна w a , а давление далеко за движителем равно р 0 - Запишем уравнение Бернулли для участка линии тока от сечения /-/, находящегося в невозму­щенной жидкости, до сечения //-//, расположенного непосред­ственно перед диском. Поскольку жидкость считается безгра­ничной, силами тяжести можно пренебречь:

Для участка от сечения ///-/// до сечения IV-IV, расположен­ного на бесконечности от движителя,

Уравнение Бернулли в данном случае нельзя применить на всей длине линии тока, так как в плоскости диска имеет место скачок давлений. Последний легко находится из уравнений (3.1) и (3.2):

после чего упор можно вычислить с помощью формулы

Содержание статьи

СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ, устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и двигатели внутреннего сгорания, в основном дизельные. На крупных и мощных специализированных судах типа ледоколов и подводных лодок часто применяются атомные энергетические установки.

По-видимому, первым предложил использовать энергию пара для движения судов Леонардо да Винчи (1452–1519). В 1705 Т.Ньюкомен (Англия) запатентовал первую довольно эффективную паровую машину, но его попытки использовать возвратно-поступательное движение поршня для вращения гребного колеса оказались неудачными.

ТИПЫ СУДОВЫХ УСТАНОВОК

Пар – традиционный источник энергии для движения судов. Пар получают при сжигании топлива в водотрубных котлах. Чаще других применяются двухбарабанные водотрубные котлы. В этих котлах имеются топки с водоохлаждаемыми стенками, пароперегреватели, экономайзеры, а иногда и воздухоподогреватели. Их КПД достигает 88%.

Дизели впервые появились в качестве судовых двигателей в 1903. Расход топлива в судовых дизелях составляет 0,25–0,3 кг/кВтЧ ч, а паровые машины расходуют 0,3–0,5 кг/кВтЧ ч в зависимости от конструкции двигателя, привода и других конструктивных особенностей. Дизели, особенно в сочетании с электроприводом, очень удобны для применения на паромах и буксирах, поскольку обеспечивают высокую маневренность.

Поршневые паровые машины.

Времена поршневых машин, когда-то служивших самым разнообразным целям, прошли. По КПД они существенно уступают как паровым турбинам, так и дизелям. На тех судах, где еще стоят паровые машины, – это компаунд-машины: пар расширяется последовательно в трех или даже четырех цилиндрах. Поршни всех цилиндров работают на один вал.

Паровые турбины.

Судовые паровые турбины обычно состоят из двух каскадов: высокого и низкого давления, каждый из которых через понижающий редуктор вращает вал гребного винта. На военно-морских судах часто дополнительно ставят небольшие турбины для крейсерского режима, которые используют для повышения экономичности, а при максимальных скоростях включаются мощные турбины. Каскад высокого давления вращается со скоростью 5000 об/мин.

На современных паровых судах питательная вода из конденсаторов в подогреватели подается через несколько ступеней нагрева. Нагрев производится за счет тепла рабочего тела турбины и отходящих топочных газов, обтекающих экономайзер.

Почти все вспомогательное оборудование имеет электрический привод. Электрогенераторы с приводом от паровых турбин обычно вырабатывают постоянный ток напряжением 250 В. Используется и переменный ток.

Если передача мощности от турбины на винт осуществляется через редуктор, то для обеспечения заднего хода (обратное вращение винта) применяется дополнительная небольшая турбина. Мощность на валу при обратном вращении составляет 20–40% основной мощности.

Электропривод от турбины к гребному винту был очень популярен в 1930-е годы. В этом случае турбина вращает высокооборотный генератор, а выработанная электроэнергия передается на малооборотные электродвигатели, которые вращают гребной вал. КПД зубчатой передачи (редуктора) примерно 97,5%, электропривода – около 90%. В случае электропривода обратное вращение обеспечивается просто переключением полярности.

Газовые турбины.

Газовые турбины появились на судах значительно позже, чем в авиации, поскольку выигрыш в весе в судостроении не так важен, и этот выигрыш не перевешивал высокую стоимость и сложность монтажа и эксплуатации первых газовых турбин.

Газовые турбины используют на судах не только как главные двигатели; они нашли применение в качестве приводов для пожарных насосов и вспомогательных электрогенераторов, где выгодны их небольшой вес, компактность и быстрый запуск. В военно-морском флоте газовые турбины широко применяются на небольших скоростных судах: десантных катерах, минных тральщиках, судах на подводных крыльях; на больших кораблях их используют для получения максимальной мощности.

Современные газовые турбины обладают приемлемым уровнем надежности, стоимости эксплуатации и производства. Учитывая их малый вес, компактность и быстрый запуск, они во многих случаях становятся конкурентоспособными с дизелями и паровыми турбинами.

Дизельные двигатели.

Впервые дизель как судовой двигатель был установлен на «Вандале» в Санкт-Петербурге (1903). Это произошло всего через 6 лет после изобретения Дизелем своего двигателя. На «Вандале», ходившем по Волге, было два гребных винта; каждый винт устанавливался на одном валу с 75-кВт электродвигателем. Электроэнергия вырабатывалась двумя дизель-генераторами. Трехцилиндровые дизели мощностью по 90 кВт имели постоянную частоту вращения (240 об/мин). Мощность от них нельзя было передавать непосредственно на гребной вал, поскольку не было реверса.

Пробная эксплуатация «Вандала» опровергла общее мнение, что дизели нельзя применять на судах из-за опасности вибраций и высоких давлений. Более того, расход топлива составил только 20% от расхода топлива на пароходах того же водоизмещения.

Внедрение дизелей.

За десять лет, прошедших после установки первого дизеля на речное судно, эти двигатели подверглись значительному усовершенствованию. Увеличилась их мощность за счет повышения числа оборотов, увеличения диаметра цилиндра, удлинения хода поршня, а также разработки двухтактных двигателей.

Число оборотов существующих дизелей составляет от 100 до 2000 об/мин; высокооборотные дизели применяются на небольших быстроходных катерах и во вспомогательных дизель-генераторных системах. Их мощность варьируется в столь же широком диапазоне (10–20 000 кВт). В последние годы появились дизели с наддувом, что увеличивает их мощность примерно на 20%.

Сравнение дизельных двигателей с паровыми.

Дизели имеют преимущество над паровыми двигателями на небольших судах благодаря своей компактности; кроме того, они легче при одинаковой мощности. Дизели расходуют меньше топлива на единицу мощности; правда, дизельное топливо дороже топочного. Расход дизельного топлива можно уменьшить дожиганием отработанных газов. На выбор энергетической установки влияет и тип судна. Дизельные двигатели запускаются гораздо быстрее: их не надо предварительно разогревать. Это очень важное преимущество для портовых судов и вспомогательных или резервных силовых установок. Однако есть преимущества и у паротурбинных установок, которые надежнее в эксплуатации, способны длительное время работать без регламентного обслуживания, отличаются меньшим уровнем вибраций благодаря отсутствию возвратно-поступательного движения.

Судовые дизели.

Судовые дизели отличаются от прочих дизелей только вспомогательными элементами. Они непосредственно либо через редуктор вращают гребной вал и должны обеспечивать обратное вращение. В четырехтактных двигателях для этого служит дополнительная муфта обратного хода, которая входит в зацепление при необходимости обратного вращения. В двухтактных двигателях с обеспечением обратного вращения проще, поскольку последовательность работы клапанов определяется положением поршня в соответствующем цилиндре. В небольших двигателях обратное вращение получают с помощью муфты сцепления и зубчатой передачи. На некоторых сторожевых кораблях и амфибиях длиной менее 60 м ставят реверсивные гребные винты (см. ниже ). Для того чтобы число оборотов двигателя не превысило безопасный предел, все двигатели оборудованы ограничителями частоты вращения.

Электрическая тяга.

Термином «суда с электрической тягой» называют суда, у которых одним из элементов системы преобразования энергии топлива в механическую энергию вращения гребного вала является электрическая машина. Один или несколько электродвигателей соединяются с валом винта напрямую или через редуктор. Питание электродвигателей осуществляется от электрогенераторов, приводом которых служит паровая или газовая турбина либо дизель. На подводных лодках в подводном положении питание электродвигателей осуществляется от аккумуляторов, а в надводном – от дизель-генераторов. Электрические машины постоянного тока обычно устанавливаются на небольших и на высокоманевренных судах. Машины переменного тока используются на океанских лайнерах.

Турбоэлектроходы.

На рис. 1 представлена схема турбоэлектропривода с котельной установкой для получения пара. Пар вращает турбину, которая, в свою очередь, вращает электрогенератор. Выработанная электроэнергия подается на электродвигатели, которые связаны с гребным валом. Обычно каждый турбогенератор работает на один электродвигатель, который вращает свой винт. Однако такая схема позволяет легко подсоединить к одному турбогенератору несколько электродвигателей, а следовательно, несколько гребных винтов.

Судовые турбогенераторы переменного тока могут вырабатывать ток с частотой в пределах 25–100% максимальной, но не более 100 Гц. Генераторы переменного тока вырабатывают ток напряжением до 6000 В, постоянного – до ~900 В.

Дизельэлектроходы.

Дизельэлектрический привод по существу не отличается от турбоэлектрического, за исключением того, что котельная установка и паровая турбина заменены дизельным двигателем.

На небольших судах обычно на каждый винт работают один дизель-генератор и один электродвигатель, однако при необходимости можно отключить один дизель-генератор для экономии или включить дополнительный для увеличения мощности и скорости.

КПД . Электродвигатели постоянного тока на низких оборотах создают больший крутящий момент, чем турбины и дизели с механической передачей. Кроме того, у двигателей и постоянного и переменного тока крутящий момент одинаков как при прямом, так и при обратном вращении.

Полный КПД турбоэлектропривода (отношение мощности на гребном валу к энергии топлива, выделяющейся в единицу времени) ниже, чем КПД турбинного привода, хотя турбина и соединена с гребным валом через два понижающих редуктора. Турбоэлектропривод тяжелее и дороже механического турбинного привода. Полный КПД дизельэлектропривода примерно такой же, как у механического турбинного привода. Каждый тип привода имеет свои достоинства и недостатки. Поэтому выбор типа двигательной установки определяется типом судна и условиями его эксплуатации.

Электроиндукционная муфта.

В этом случае передача мощности от двигателя к гребному винту производится электромагнитным полем. Принципиально такой привод подобен обычному асинхронному электродвигателю, за исключением того, что и статор и якорь электродвигателя в электромагнитном приводе сделаны вращающимися; один из них связан с валом двигателя, а другой – с гребным валом. Элемент, связанный с двигателем, представляет собой обмотку возбуждения, которая питается от внешнего источника постоянного тока и создает электромагнитное поле. Элемент, связанный с гребным валом, представляет собой короткозамкнутую обмотку без внешнего питания. Оба элемента разделены воздушным промежутком. Вращающееся магнитное поле возбуждает в обмотке второго элемента ток, что заставляет этот элемент вращаться, но всегда медленнее (со скольжением), чем первый элемент. Возникающий крутящий момент пропорционален разности частот вращения этих элементов. Выключение тока возбуждения в первичной обмотке «разъединяет» эти элементы. Частоту вращения второго элемента можно регулировать, меняя ток возбуждения. При одном дизельном двигателе на судне использование электромагнитного привода позволяет снизить вибрации благодаря отсутствию механической связи двигателя с гребным валом; при нескольких дизельных двигателях такой привод повышает маневренность судна за счет переключения гребных винтов, поскольку направление их вращения легко изменить.

Атомные энергетические установки.

На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину. См . АТОМНАЯ ЭНЕРГЕТИКА.

В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.

Безопасность.

Вокруг реактора приходится ставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения – бетон, свинец, вода, пластмассы и сталь.

Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.

Судовые ядерные реакторы.

Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла.

Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий.

На всех военно-морских судах, на первом атомном ледоколе «Ленин», на первом грузо-пассажирском судне «Саванна» стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 270° С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре.

В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США «Си Вулф», где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико. Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества – дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором – образование смолистых отложений.

Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.

Защита.

Ее главная функция – обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах.

В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора.

Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом.

Основная функция вторичной защиты – снизить излучение радиоактивного изотопа азота 16 N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен.

Экономичность судов с атомными энергетическими установками.

Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.

СУДОВЫЕ ДВИЖИТЕЛИ

Существует четыре основных вида судовых движителей: водометные движители, гребные колеса, гребные винты (в том числе с направляющей насадкой) и крыльчатый движитель.

Водометный движитель.

Водометный движитель – это, по существу, просто поршневой или центробежный насос, который засасывает воду через отверстие в носу или днище корабля и выбрасывает через сопла в кормовой его части. Создаваемый упор (сила тяги) определяется разностью количеств движения струи воды на выходе и входе в движитель. Водометный движитель был впервые предложен и запатентован Тугудом и Хейсом в Англии в 1661. Позднее разные варианты такого двигателя предлагали многие, но все конструкции были неудачными из-за низкого КПД. Водометный движитель применяется в некоторых случаях, когда низкий КПД компенсирутся преимуществами в других отношениях, например для плавания по мелководным или засоренным рекам.

Гребное колесо.

Гребное колесо в самом простом случае – это широкое колесо, у которого по периферии установлены лопасти. В более совершенных конструкциях лопасти могут поворачиваться относительно колеса так, чтобы они создавали нужную пропульсивную силу при минимальных потерях. Ось вращения колеса расположена выше уровня воды, и погружена лишь его небольшая часть, поэтому в каждый данный момент времени только несколько лопастей создают упор. КПД гребного колеса, вообще говоря, возрастает с увеличением его диаметра; не редкость значения диаметра 6 м и более. Частота вращения большого колеса получается низкой. Невысокое число оборотов соответствовало возможностям первых паровых машин; однако со временем машины совершенствовались, их скорости возросли, и малые обороты колеса стали серьезным препятствием. В итоге гребные колеса уступили место гребным винтам.

Гребные винты.

Еще древние египтяне использовали винт для подачи воды из Нила. Есть свидетельства, что в средневековом Китае для движения судов использовали винт с ручным приводом. В Европе винт в качестве судового движителя впервые предложил Р.Гук (1680).

Конструкция и характеристики.

Современный гребной винт обычно имеет несколько лопастей примерно эллиптической формы, равномерно расположенных на центральной втулке. Поверхность лопасти, обращенную вперед, в нос судна, называют засасывающей, обращенную назад – нагнетающей. Засасывающая поверхность лопасти выпуклая, нагнетающая – обычно почти плоская. На рис. 2 схематично показана типичная лопасть гребного винта. Осевое перемещение винтовой поверхности за один оборот называют шагом p ; произведение шага на число оборотов в секунду pn – осевая скорость лопасти винта нулевой толщины в недеформируемой среде. Разность (pn - v 0), где v 0 – истинная осевая скорость винта, характеризует меру деформируемости среды, называемую скольжением. Отношение (pn - v 0)/pn – относительное скольжение. Это отношение – один из основных параметров гребного винта.

Важнейшим параметром, определяющим рабочие характеристики гребного винта, является отношение шага винта к его диаметру. Следующие по значимости – количество лопастей, их ширина, толщина и форма, форма профиля и дисковое отношение (отношение суммарной площади лопастей к площади описывающего их круга) и отношение диаметра втулки к диаметру винта. Экспериментально определены диапазоны изменения этих параметров, обеспечивающие хорошие рабочие характеристики: шаговое отношение (отношение шага винта к его диаметру) 0,6–1,5, отношение максимальной ширины лопасти к диаметру винта 0,20–0,50, отношение максимальной толщины лопасти вблизи втулки к диаметру 0,04–0,05, отношение диаметра втулки к диаметру винта 0,18–0,22. Форма лопасти обычно яйцевидная, а форма профиля – плавно обтекаемая, очень похожая на профиль крыла самолета. Размеры современных гребных винтов варьируются от 20 см до 6 м и более. Мощность, развиваемая винтом, может составлять доли киловатта, а может превышать 40 000 кВт; соответственно, частота вращения лежит в диапазоне от 2000 об/мин для малых винтов до 60 для больших. КПД хороших винтов составляет 0,60–0,75 в зависимости от шагового отношения, числа лопастей и других параметров.

Применение.

На судах ставят один, два или четыре гребных винта в зависимости от размеров судна и требуемой мощности. Одиночный винт обеспечивает более высокий КПД, поскольку отсутствует интерференция и часть энергии, затрачиваемой на движение судна, восстанавливается гребным винтом. Это восстановление выше, если гребной винт установлен в середине спутной струи сразу за ахтерштевнем. Некоторое увеличение пропульсивной силы может быть достигнуто с помощью разрезного руля, для чего верхнюю и нижнюю части руля немного отклоняют в противоположные стороны (соответственно вращению винта), с тем чтобы использовать поперечную составляющую скорости струи после винта для создания дополнительной составляющей силы в направлении движения судна. Применение нескольких винтов увеличивает маневренность судна и возможности поворота без использования рулей, когда винты создают упор в разных направлениях. Как правило, реверсирование упора (изменение направления действия пропульсивной силы на обратное) достигается реверсированием вращения гребных двигателей, но существуют и специальные реверсивные винты, которые позволяют реверсировать упор без изменения направления вращения валов; это достигается поворотом лопастей относительно втулки с помощью механизма, расположенного во втулке и приводимого в действие через полый вал. Гребные винты изготавливают из бронзы, отливают из стали или чугуна. Для работы в соленой воде предпочтительнее сплав бронзы, легированной марганцем, поскольку он хорошо поддается шлифованию и успешно противостоит кавитации и воздействию соленой воды. Спроектированы и созданы высокоскоростные суперкавитирующие винты, у которых вся засасывающая поверхность занята зоной кавитации. При малых скоростях такие винты обладают несколько меньшим КПД, однако они значительно эффективнее обычных при высоких скоростях.

Винт с направляющей насадкой.

Винт с насадкой – обычный винт, установленный в коротком сопле, – изобретен немецким инженером Л.Кортом. Насадка жестко соединена с корпусом судна или выполнена с ним как одно целое.

Принцип действия.

Был сделан ряд попыток установить винт в трубе для улучшения его рабочих характеристик. В 1925 Корт обобщил результаты этих исследований и существенно усовершенствовал конструкцию: он превратил трубу в короткое сопло, диаметр которого на входе был больше, а форма соответствовала аэродинамическому профилю. Корт установил, что такая конструкция обеспечивает значительно больший упор при заданной мощности по сравнению с обычными винтами, поскольку струя, ускоряемая винтом, при наличии насадки сужается в меньшей степени (рис. 3). При одинаковых расходах скорость за винтом с насадкой (v 0 + u u ). В связи с этим винты с насадкой чаще ставят на буксирах, траулерах и аналогичных судах, которые буксируют тяжелые грузы с малой скоростью. Для таких судов выигрыш на единицу мощности, создаваемый винтом с насадкой, может достигать 30–40%. На быстроходных судах винт с насадкой не имеет преимуществ, поскольку небольшой выигрыш в КПД теряется из-за увеличения сопротивления на насадке.

Крыльчатые движители.

Такой движитель представляет собой диск, на котором по периферии перпендикулярно плоскости диска размещены 6–8 лопатообразных лопастей. Диск установлен заподлицо с днищем корабля, а в поток опущены только лопасти движителя. Диск с лопастями вращается относительно своей оси, и, кроме того, лопасти совершают вращательное или колебательное движение относительно своей продольной оси. В результате вращательного и колебательного движений лопастей вода ускоряется в требуемом направлении, и создается упор для движения судна. Такой тип движителя имеет преимущество перед гребным винтом и гребным колесом, поскольку может создавать упор в любом желаемом направлении: вперед, назад и даже вбок без изменения направления вращения двигателя. Поэтому для управления судами с крыльчатым движителем не требуется рулей или других механизмов. Хотя крыльчатые движители не могут заменить гребные винты по универсальности применения, в некоторых специальных случаях они весьма эффективны.

Литература:

Акимов Р.Н. и др. Справочник судового механика . М., 1973–1974
Самсонов В.И. и др. Судовые двигатели внутреннего сгорания . М., 1981
Овсянников М.К., Петухов В.А. Судовые дизельные установки (спр.). Л., 1986
Артюшков Л.С. и др. Судовые движители . Л., 1988
Батырев А.Н. и др. Корабельные ядерные установки зарубежных стран . СПб., 1994


Поделиться